
THE EARTH SYSTEM GRID FEDERATION
AS A TESTBED FOR

GLOBAL DISTRIBUTED DATA ANALYTICS
WORKSHOP ON

REMOTE SENSING, UNCERTAINTY QUANTIFICATION, AND A THEORY OF DATA SYSTEMS
CALTECH, PASADENA (CA)

FEBRUARY 2018

LUCA CINQUINI
JET PROPULSION LABORATORY, CALIFORNIA INSTITUTE OF TECHNOLOGY

© 2018. ALL RIGHTS RESERVED.
JPL UNLIMITED RELEASE CLEARANCE NUMBER: #17-5659

PART 1
INTRODUCTION TO THE
EARTH SYSTEM GRID FEDERATION

ESGF Overview
ESGF is an international collaboration of climate centers working together to manage
and provide access to climate data - models and observations

Started more than a decade ago, now the world premier technology infrastructure in
support of climate science

Spanning several tens of institutions in Europe, North America, Australia and Asia

Funding from DOE, NASA (U.S.), Copernicus (EU), NCI (Australia), CRIM (Canada)

Winner of the 2017 “R&D 100 Award” - prestigious conference that every year
recognizes the top 100 most innovate products in software, science and technology

System Architecture
ESGF is a system of distributed and federated Nodes that host data and services

Distributed: data and metadata are published, stored and served from multiple
Nodes across the world

Federated: Nodes interoperate because of the adoption of common services,
protocols and APIs, and the establishment of mutual trust relationships

A client (browser or program) can start from any Node in the federation and
discover, download and analyze data from multiple locations as if they were
stored in a single central archive

Current Data Holdings
ESGF hosts some of the most prominent data collections for
climate change research:

CMIP3, CMIP5 (“Coupled Model Inter-Comparison Project“):
output of global climate model used for periodic IPCC
assessment reports on climate change

CORDEX (“COrdinated Regional climate Downscaling
EXperiment"): output of regional climate models, grouped by
domain (N. America, Europe, Antarctica, etc.)

Obs4MIPs (“Observations for Model Inter-Comparison”):
observational data from NASA, ESA, etc. formatted to look like
climate model output

Ana4MIPS (“ReAnalysis for Model Inter-Comparison”): re-
analysis data formatted like model output

Many other MIPs: TAMIP, GeoMIP, DCMIP, …

The World Climate Research Program (WCRP) has recommended
that ESGF infrastructure be supported operationally, and that all
future MIPs follow the CMIP5 process and standards (October ’12)

HadCM3

CORDEX

Obs4MIPs

Future Data Holdings
ESGF is preparing for a massive increase in its data holdings (10x in the
next 3 years):

CMIP6 - starting in early 2018 and terminating in mid 2019

Models runs by ~30 modeling centers around the world

Approximately 25-40 PB of uncompressed primary output,
replicated at 4 sites

Supporting CMIP6 will require enhanced scalability and new
services for metadata, errata, persistent identifiers

ESGF is holding a series of “Data and Services” challenges
leading to a formal release of CMIP6 data on June 1st, 2018

Obs4MIPs - expected ~200 more data collections from NASA, NOAA
and European agencies

Dozens of additional MIPs expected to leverage ESGF infrastructure

PART 2
ESGF DATA ACCESS
AND ANALYTICAL CAPABILITIES

Federated Search
ESGF features a state-of-the-art federated search based on Apache Solr,
including advanced features as distributed searches and replication

Metadata are stored on separate catalogs at multiple sites, yet a search
initiated at any site is able to find results throughout the federation

Each site runs at least 2 Solr instances: one master Solr to publish
metadata (“write”) and one slave Solr to search (“read”)

Optionally, a site can choose to replicate some or all of the remote
catalogs to improve search performance

INDEX NODE

Solr
Master
(Write)

Solr
Slave
(Read)

INDEX NODE

Solr
Master
(Write)

Solr
Slave
(Read)aggregations

files
datasets

INDEX NODE

Solr
Master
(Write)

Solr
Slave
(Read)

Solr
Replica
(Read)

Solr
Replica
(Read)

Search API
ESGF exposes a RESTful API to query its distributed
metadata catalogs:

Available to any HTTP client, including the front-
end web portals

The HTTP client can start the query from any
index node, results will span the whole federation

Query syntax supports both free text and
climate-specific keywords (aka facets)

Results returned as XML or JSON, possibly
paginated

Query for CMIP5 model output from a specific model that contains daily humidity:

https://esgf-node.jpl.nasa.gov/esg-search/search/?
project=CMIP5&variable=hus&model=CCSM4&time_frequency=day

See: https://www.earthsystemcog.org/projects/cog/esgf_search_restful_api

https://www.earthsystemcog.org/projects/cog/esgf_search_restful_api

Authentication & Authorization
ESGF features a federated authentication and
authorization model:

Authentication: users can register at any Node,
they are assigned an OpenID which they can
use to authenticate anywhere in the federation

Authorization: each Node has complete control
over local resources by establishing policies that
match group of resources to the required group
membership for specific operations - tuple:
(resource, group, policy)

Despite our best efforts, security remains an
obstacle when users want to access data

Upcoming security improvements:

OpenID 2.0 —> OAuth2.0 and OpenID Connect

Group membership —> free data download for
major data collections

MyProxy —> SLCS server to request an X.509
certificate via HTTP for some operations (data
publishing and data processing)

ESGF Node A

registration >
authentication >

ESGF Node B

data access >

user identity >

Data

data access policy

ESGF Node C

user attributes >

Group Membership
Database

Data Download
ESGF supports several methods to download data from the system:

Using a browser to initiate a single file download via HTTP

Using a browser to generate a wget script to download a large number of files via HTTP

Using a browser to initiate a Globus download through GridFTP

Using OpenDAP API to select specific variables, sub-set by space and time

Using esgfpy client to search and download full files

Currently all methods require authentication via OpenID or X.509 cert + group membership

Search Results Data Cart Globus Download

Remote Computing
ESGF is working at enabling server-side
computing i.e. moving the computation to the
data

Motivated by ever large size of data archives -
impossible to download to a central location

Problem is made even more complex by the
distributed nature of the archives

Compute architecture under development is
based on the client-server paradigm:

Each ESGF Node deploys a Compute
processing server

A client (program or web portal) makes HTTP
request to one server which optionally
retrieves data from other servers through
OpenDAP

Currently operations can be performed at one
Node only

ESGF Node

Compute Engine

WPS Request
GET or POST >

UV-CDAT
implementation

Compute Client

Compute Server Side API

Data

EDAS
implementation

Ophidia
implementation

 < WPS Response

ESGF Node

Data

Compute Engine

Compute Client Side API

Remote Computing: Server Side
ESGF defined a server-side computing API that conforms to the OGC/WPS standard

GET: http://hostname/wps?service=wps&request=getcapabilities

GET: http://hostname/wps?service=wps&request=describeprocess&identifier=grid

GET: http://hostname/wps?
service=wps&request=execute&identifier=grid&datainputs=dataset=OCO2;algorithm=simple_averaging

POST: supports more complex requests with XML payload

3 different back-end implementations of server-side API:

UV-CDAT (LLNL): subset, aggregate, regrid, min, max, supports curvilinear grids

EDAS (NCCS/GSFC): parallelized (Spark) subset, aggregate, regrid, ensemble (mul, diff, min, max, ave,
sum), and reduction (mul, diff, min, max, ave, sum, rms), supports composition of canonical operations
into workflows

Ophidia (CMCC): subset and reduction (max,min)

Django application packaged as Docker container brokers request to available(s) back-end implementation

Status: test servers deployed at LLNL, NCCS, currently being integrated with ESGF software stack

Currently no provision for running custom analytics

Documentation: https://github.com/ESGF/esgf-compute-wps

Remote Computing: Client Side
ESGF developed a client-side
Python library to facilitate the
process of creating, sending and
monitoring compute requests

Several examples available as
Jupyter notebooks

Requires authentication:

User first logs onto web portal
with OpenID, password to
obtain an authorization token

Authorization token in used as
part of client toolkit

Documentation: https://
github.com/ESGF/esgf-compute-
api

https://github.com/ESGF/esgf-compute-api

Remote Computing: Web Client
Also available: web user interface
to formulate and send requests
to the remote Compute engine

Integrated with standard ESGF UI

PART 3
SUMMARY: USING ESGF AS A TESTBED
FOR ANALYTICAL DATA PROCESSING

Client-Driven Architecture
A local client access all data via ESGF APIs (search, download, subset)

All processing executed locally (laptop, in-premise, cloud)

Still takes advantage of a distributed federated archive, standard data/metadata
formats, programmatic access APIs

Possibly no access control for read-only operations

Can be executed right now

ClientAnalytics

ESGF Node

DataESGF APIs

ESGF Node

DataESGF APIs

Server-Side Computation
In the near future (~12 months), ESGF will support server-side computation

Analytics can be executed close to the data, but must conform to the WPS API

Must use access control to authorize execution on remote servers

Open questions:

How to deploy custom algorithms at each Node ?

Maybe use a limited number of “friendly” Nodes

How to execute workflows that span multiple Nodes ?

Client

ESGF Node

Data

ESGF
Compute

Server-Side
API

Analytics

ESGF Compute
Client-Side

 API ESGF Node

Data

ESGF
Compute

Server-Side
API

Analytics

Containerization
ESGF is working on a new system architecture based on Docker containers

A “container” is a lightweight package that includes a program executable + all its
dependencies + just enough OS to run it

In the future, all ESGF data services will be deployed and operated as Docker
containers

ESGF Database Node

ESGF Front-End Node

ESGF User Interface Node ESGF Index Node ESGF Identity Provider
Node ESGF Data NodeESGF Data NodeESGF Data Node

POSTGRES DATA

Apache httpd

CoG
(mod_wsgi)

esgf-search webapp
(Tomcat)

Dashboard UI
(Tomcat)

Postgres
SOLR CATALOGS

Stores local metadata
catalogs and replicas,

enables searching

web accessible UI for
human users

Front-End
network proxy

User authentication,
issues temporary

credentials
Data storage and access

Dashboard Information
Provider

Dashboard stats API
(Tomcat)

THREDDS CATALOGS

Solr
(Jetty)Solr

(Jetty)Solr
(Jetty)Solr

(Jetty)
esgf-idp
(Tomcat)

SLCS + OAuth servers

Threads Data Server
(Tomcat)

esgf access control filters

Openid Relying Party
(Tomcat)

ESGF Publisher Client

ESGF OAuth Client

Containerization
ESGF/Docker software stack 1.4 as deployed on an AWS cluster
of 5 EC2 instances

Containerization
In the next few years, we can expect most ESGF sites to use Docker to operate at least some of
their services - possibly the full ESGF stack

Docker engine at each site can be used to execute custom analytics as self-contained Docker
containers

No complex software installation at each site

Direct read-only access to local data - no data level access control

Open questions:

How do you orchestrate containers running at distributed sites ?

How do you authorize containers to run at each site ?

Client

ESGF Node

Data

Docker Container

Analytics

Docker Engine

ESGF Node

Data

Docker Container

Analytics

Docker Engine

QUESTIONS ?

